Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis.
نویسندگان
چکیده
In this work, we performed DNA microarray studies on lager brewer's yeast Saccharomyces pastorianus to investigate changes in gene expression in the process of autolysis. The two strains we used were Qing2 and 5-2. Strain 5-2 is a mutant of Qing2 and autolyzes much more slowly than its parent strain. Four samples of these two strains during different autolysis stages (0% and 15%) were tested using DNA microarray containing > 10,000 yeast's genes. Analysis of genes with the same transcription pattern (up- or down-regulated in both strains) showed that the same 99 genes were up-regulated (transcription levels were increased), and the same 97 genes were down-regulated (transcription levels were decreased) by fivefold or more during autolysis. Genes involved in energy production/utilization, protein anabolism, and stress response were down-regulated. Genes related to cell wall organization and biogenesis, starvation response and DNA damage response were up-regulated. Analysis of genes with opposite transcription patterns (up-regulated in one strain and down-regulated in the other one) showed that 246 genes were up-regulated in 5-2 (autolyzes slowly) and down-regulated in Qing2 (autolyzes rapidly). Another 18 genes had opposite transcription levels, indicating that the strain which autolyzes slowly had better cell vitality despite the same autolysis stage. These findings might further promote the global understanding of autolysis in yeast.
منابع مشابه
Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.
Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad ...
متن کاملImproved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.
The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer's worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer's yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. alpha-Glucosides are transported into Saccharo...
متن کاملThe temperature dependence of maltose transport in ale and lager strains of brewer's yeast
Lager beers are traditionally made at lower temperatures (6-14 degrees C) than ales (15-25 degrees C). At low temperatures, lager strains (Saccharomyces pastorianus) ferment faster than ale strains (Saccharomyces cerevisiae). Two lager and two ale strains had similar maltose transport activities at 20 degrees C, but at 0 degrees C the lager strains had fivefold greater activity. AGT1, MTT1 and ...
متن کاملSpent Brewer's Yeast Autolysates as a New and Valuable Component of Functional Food and Dietary Supplements
The aim of the work was to obtain autolysates derived from spent brewer's yeast and demonstrate their potential capabilities as a natural and valuable ingredients intended for functional food and dietary supplements production. The research material consisted of yeast Saccharomyces cerevisiae which was the remains after the beer production process. In these autolysates the following analyses we...
متن کاملEvolutionary Study of Birds' Sense of Smell Reveals Important Clues for Behavior and Adaptation.
From Austrian monks to American craft brewers, beer geeks are everywhere. But making a good beer not only depends on the best ingredients, but also the best yeast. The beer world is divided into ales and lagers. Lager yeasts are hybrid strains, made of two different yeast species, Saccharomyces cerevisiae and S. eubayanus (discovered in 2011). In a new study in the journal Molecular Biology and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS yeast research
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2014